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A previous paper (1992) by the same authors studied the phenomenon of transient congestion in landings at an airport and 
developed a recursive approach for computing moments of queue lengths and waiting times. This paper extends our approach to 
a network, developing two approximations based on the prior method. Both approaches work by using delay information 
estimated at one location to update arrival schedules at other points in the network. We present computational results for a 
simple 2-node network, comparing the performance of the approximations with an alternative simulation approach. The methods 
give similar results in light to moderate traffic but show a growing disparity under heavier traffic, where the algorithms underes- 
timate the true magnitude of delay propagation relative to simulation. Finally, to illustrate the usefulness of the modeling, we 
show how the results may be used to explore the issue of interaction between airports. Although this particular application 
motivated development of the model, the method is, in principle, applicable to other multiclass queueing networks where service 
capacity at a station may be modeled as a Markov or semi-Markov process. The model represents a new approach for analyzing 
transient congestion phenomena in such networks. 

airport congestion and delay grew significantly dur- 
l ng the 1980s, to the point where in 1990, 21 air- 

ports in the U.S. exceeded 20,000 hours of delay 
(55 aircraft hours per airport-day), with 12 more projected 
to exceed this total by 1997 (National Transportation 
Research Board 1991). Growing concern with these delays 
revived interest in operations research models that deal 
with air traffic congestion (for a review, see, e.g., Odoni, 
1991). 

From a queueing point of view, airport congestion 
problems are both challenging and important. Odoni and 
Roth (1983) and Roth (1981) showed that for a typical 
airport, the queue relaxation time-the time necessary to 
reach steady-state conditions-is significantly longer 
than the time over which the arrival process may be 
reasonably taken as constant. The work of Green, 
Kolesar and Svoronos (1991) and Green and Kolesar 
(1991, 1993) has also indicated the shortcomings of 
steady-state analysis under these conditions. 

During the 1980s, air traffic congestion underwent a 
significant new development with the evolution of the 
hub-and-spoke network design now favored by almost all 
major carriers. This operational design offers significant 
economic gains to carriers, and compresses arrivals and 
departures at airports where connections occur ("hubs") 
into short intervals of time ("banks" of arrivals and de- 
partures), straining capacity, and creating a situation 

where traffic congestion and delays at the hub can have 
serious repercussions for delays throughout the network. 
Motivated by this important operational concern, 
Peterson, Bertsimas, and Odoni (1992) undertook a de- 
tailed study of congestion at a hub airport, employing a 
discrete-time model, which focused on changes in 
weather-related capacity. The study provided the begin- 
nings of a new approach to this type of transient queue- 
ing problem, but ignored the potentially important 
phenomenon of interaction between airports in the 
network. 

Modeling transient phenomena in the network context 
constitutes a still more difficult problem. Related re- 
search has been limited mainly to diffusion approxima- 
tions (Kobayashi 1974, following the earlier work of 
Iglehart and Whitt 1970) and special case networks 
(Keilson and Servi 1990 on networks of M/G/oo queues). 
A different kind of approach was developed by Whitt 
(1983) with the queueing network analyzer. The ap- 
proach presented in this paper is similar in spirit (though 
far different in content) to this latter work. We seek to 
extend the earlier work for one queue in isolation to the 
case of the network by way of approximating changes in 
arrival streams induced by earlier delays. 

The model is motivated by the desire to study network 
effects of air traffic congestion, and in this context it 
provides important qualitative insight. This is illustrated 
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through two examples at the end of Section 4. The first 
examines the "coupling" between a pair of congested 
major airports. In this context, the model is envisioned 
as a strategic-level planning tool to assist schedulers in 
assessing the effects of hub "connectivity"-the percent- 
age of aircraft sharing multiple hubs-on the propagation 
of delay from one hub to another. A second example 
illustrates how the model is useful in deciding how much 
slackc" time should be added to the period an aircraft 
spends between successive flight legs. The purpose of 
these slack times, which have been used increasingly by 
airlines during the past 10 years, is to reduce the impact 
that delays early in a day may have on flights later on. 
Weather variability and the attendant variability of air- 
port capacities from day to day make it necessary to 
consider carefully the tradeoff between, on one hand, 
the efficient utilization of aircraft and crews and, on the 
other, the reliable execution of advertised schedules. 
One major airline (American) is currently in the process 
of addressing this same problem by developing a simula- 
tion of its flight schedule, using historical records of the 
probability distribution of flight times, including delays, 
between individual pairs of airports (FitzGerald 1993). 
By contrast, the approach we describe here relies on a 
numerical queueing model that computes the delays at 
each airport from the demand profile and a probabilistic 
model of airport capacities. The model is a planning tool 
in the sense that it is concerned with developing a strat- 
egy, vis-a-vis time allowed between flights, that takes 
into consideration the full range of demand/capacity rela- 
tionships that may prevail during a season at each major 
airport in a network. In executing the resulting schedule 
on a daily basis, an airline will make tactical adjustments 
through such actions as cancellation of some delayed 
flights and substitution of late-arriving aircraft by spare 
aircraft. 

Beyond the air transportation context, our work com- 
prises another step in developing a body of knowledge in 
the transient analysis of multiclass queueing networks. 
Although air transportation problems motivated this 
work from the start, the techniques presented are appli- 
cable for general queueing networks with time-varying 
arrivals which may be approximated as deterministic 
over short periods and with time-varying and serially 
correlated service times. Our approximation methods 
parallel, in a crude sense, those of the QNA due to 
Whitt. We hope that the work will stimulate further 
thinking in one of the more difficult subfields of opera- 
tions research. 

The remainder of the paper is organized as follows. In 
Section 1 we review briefly the model previously devel- 
oped for queueing at a single station and describe the 
network context of the present problem. In Sections 2 
and 3 we outline two decomposition approaches which 
exploit the single-queue model. Section 2 describes a rel- 
atively simple method in which downstream arrivals are 
adjusted according to expected upstream waiting times. 

Section 3 describes a more involved approach which 
uses second moment information about delays to give a 
stochastic description of downstream arrival rates. 
Section 4 employs these approximation methods together 
with a simulation procedure on a 2-hub network. We 
provide computational results for several test problems; 
these illustrate nicely the behavior of the network and 
show where the approximations do and do not work 
well. To conclude this section, we briefly illustrate the 
usefulness of the model in studying network effects in air 
transportation. Section 5 summarizes our main conclu- 
sions and suggests areas for further work. 

1. THE BASIC MODEL 

The unit of analysis in this queueing problem is the air- 
port, where incoming arrivals require service at three 
stations: a landing runway, a gate, and a departure run- 
way. The landing operation, in particular, is subject to 
wide variations in capacity due to weather conditions. 
For purposes of this paper, we focus on landings as the 
source of delays and consider the system of one or more 
landing runways as constituting a single server. 

Consider a network of airports n = 1, ..., N. For 
airport n, the aircraft arrival process is highly time vary- 
ing, especially in the case of a hub, where traffic is con- 
centrated into "banks," intervals of highly concentrated 
arrivals or departures. We assume initially that this pro- 
cess is deterministic but time varying. We divide time 
into short intervals of fixed length At and let the number 
of aircraft demanding to land at airport n in period k be 
given by the parameter An. Within period k these arrivals 
are assumed to constitute a uniform flow. Landing capac- 
ity during a given interval k is assumed to be in one of 
S(n) states i = 1, ..., S(n) corresponding to service 
rates ~x7, IT ... , AS(n), where 

A1 < 2 < < S(n) - 

These states correspond to the capacities available under 
different configurations and weather conditions. In an ap- 
plication of this model to Dallas-Fort Worth (DFW) 
(Peterson, Bertsimas and Odoni), we found S(n) = 6 to 
be an adequate number of capacity states. 

For a given capacity state i at airport n we assume a 
random duration Tn which follows an arbitrary discrete 
distribution 

Pn(m) = Pr{1T = ml, 

the probability of a capacity Ai period lasting for pre- 
cisely m intervals of length At. Upon exiting a state i, 
the capacity process enters another state j X i with 
probability pi. In the computational results section, we 
will employ a more specialized version of the model in 
which holding times are geometrically distributed and ca- 
pacity follows a Markov chain. This assumption is not 
necessary for model development, but the Markov model 
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does give substantially better computational perfor- 
mance. Results reported for our study at DFW indicate 
that model outputs are largely insensitive to the distribu- 
tional assumption. 

Our assumptions imply that during any interval k, a 
single queue in isolation behaves like a deterministic flow 
process. That is, if qk is the length of the queue at the 
end of some period k, then the queue length one period 
later is the maximum of 0 and the values qk + Ak+l -i 

for i E {1, ... , S}. Define the state of the airport at any 
time to be {i, m}, where i identifies current capacity and 
m is the time (in intervals) for which that capacity has 
prevailed. The combined age-capacity process is Markov 
with transition probabilities 

Pij (m) A Pr((i, m) -> (j, 1)) 
= Pr[T- = mITe > m]pij, jii, 

Pji5(m) _ Pr((i, m) -- (i, m + 1)) 

=Pr[Tj > m + 1ITj > m]. (1) 

We next define the random variables: 

Qk A the queue length at end of interval k; 
Wk A the waiting time at end of interval k; 
Ck A the capacity state at end of interval k; 
Ak A the age of current capacity state at end of 

interval k; 

Ti _ the random lifetime of capacity state i. 

For mean queue length we introduce the notation 

-k (1, i, m, q) _A E[Qk |QI =q, Cl = i, Al = m] 

k=15,... , K, i=15, ...,S, m=-1,...Ml 

1 k, q = 1, ....., qmax(k, i), (2) 

where qrnax(k, i) is the maximum attainable queue length 
at the end of period k, given that at that time the capacity 
state is i. This obeys the recursion 

qmax(k, i) = [qmax(k -1) + Ak- i - (3) 

where qmax(k) - maxi q max(k, i) and x+ = max(x, 0). 
Similarly, for waiting times we employ the notation 

Wk(l, i, m, q) A E[WkIQI = q, C1 =i, Al = m]. (4) 

We write the second moment analogs of (2) and (4) as 
Qk2(l, i, m, q) and W~k2(l, i, m, q), respectively. 

Let (x A y) denote min(x, y). The quantities Ak(l, i, 
m, q), Qk2(l, i, m, q), ?UVk(l, i, m, q), and Vk2(1, i, m, 
q) can be calculated recursively, (Peterson, Bertsimas 
and Odoni). We repeat here the basic equations: 

Ak (1, i, m, q) 

- Pi>(m)Qk(l + 1,j, 1, (q + Al+, - j)+) 
Jii 

+ i5i(m)92k(l + 1, i, m + 1, (q + A1u1 - Ri)+), (5) 

92(l, i, m, q) = > j3i(m)92 
jii 

(1 + 1, j, 1, (q + Al+ -j) +) 

+fii(m)9k2(l + l, i, m + 1, 

(q + Al+, - Hi) )' (6) 

'Wk(l, i, m, q) 

= Zij (m)[Wk(l + 1,], 1, (q + Al+, - Aj)+)] 
J1i 

+jPii(m)Wk(l + 1, i, m + 1, (q + Alul - Ai)+), (7) 

'Wk2(1, i, m, q) 

- E p1j(m)[jWk2(1 + 1, j, 1, (q + A1+1 -lkj) 
jii 

+ Pii(m)[Wk2y( + 1, i, m + 1, (q + Al+,- i)+)], (8) 

Wk(k, i, m, q) 

=> pi1(m)[( A i) + cWk(k, j, 1, (q - Ij)i+)1 

+Pii(m)[(qA i) + Wk(k, i, m + 1, (q - i)+), 

(9) 

OWk2(k, i, m, q) 

f [(M) q Al +2( q Al)Wk(kj 1 1 

(q - A j +) + Wk2(k, j, 1, (q - Aj) +)] 

+ Pii(m)[(?A 1)2 + 2( qA l wk(k, i, m + 1, 

(q - /t ) +) + Wk2(k, i, m + 1, (q - Ai) +)] 

with boundary conditions 

ak(k,*, q) q, (11) 

Ak2 ,, q) q2, (12) 

?Wk(k, *, *, 0)-, (13) 

Wk2(k, *,O) 0. (14) 

For a single airport in isolation, (5)-(14) allow us to com- 
pute recursively the expectations and variances for queue 
lengths and waiting times at the end of each interval, based 
on given initial conditions. This can be achieved with com- 
putational complexity O(S2K2MQmaX), where S is the num- 
ber of capacity states, K the total number of time intervals, 
M an upper bound on the memory argument m, and Qm, 

maxk q,(k) is the highest attainable queue length over 
all periods. In the Markov case, the dimension m is unnec- 
essary, and the running time reduces to O(S2K2Qmax) 

Return now to the network of airports n = 1, 2, ... 

N. On this network let there be a set .s of aircraft num- 
bered v = 1, 2, ... , V. Divide the operating day into 
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periods of length At, numbered as k = 1, 2, ..., K. 
Each aircraft v has an itinerary 

J(v) - {(il, tvsv*)} m = 1, 2,.. 

where 

i' A the mth stop on itinerary of aircraft v; 
tA _ the scheduled arrival time at mth stop for aircraft 

v; 
*m A the slack time between stops m - 1 and m for 

aircraft v. 

Aircraft slack between stops m - 1 and m is the amount 
of time available to the aircraft at stop m - 1 beyond the 
minimal time necessary to turn it around. In the network, 
schedules are no longer exogenous and deterministic, as 
delays at one airport affect the schedules at others. In the 
terminology of queueing theory, the system is a multi- 
class queueing network, with the classes being the differ- 
ent aircraft with their individual itineraries. Service 
capacity at each airport is an autocorrelated stochastic 
process described by a semi-Markov process or Markov 
chain. Thus, our task is to describe the transient behav- 
ior of a multiclass queueing network with autocorrelated 
service rates at each node. This high degree of complex- 
ity suggests that approximation methods are necessary. 

2. A SIMPLE DECOMPOSITION APPROACH 

A first approximation approach is based on the following 
idea. Suppose that at the start of the day, one knows the 
schedules for all aircraft operating in the network. Under 
the assumption that delays are zero at the outset of the 
day, the schedule for the initial period of the day is fixed. 
Hence the first period demands are fixed, and mean 
queue lengths and waiting times for each airport during 
this period may be determined by applying (5)-(14) to 
each airport. The resulting expected waiting times for 
period 1 are estimates of the delay encountered by all 
aircraft scheduled to land in this period. Taking into ac- 
count the slack which these aircraft have in their sched- 
ules and updating future arrival streams accordingly, one 
then fixes demand for the next period, calculates the 
resulting new expected waiting times, and so forth. 

More formally, let dv represent the current cumulative 
delay for aircraft v, i.e., as aircraft v proceeds through 
its itinerary, d' is the current amount by which it is be- 
hind schedule. Further define the terms 

sL(n, k) A the set of aircraft scheduled to land at n in 
period k; 

E[W,] the mean waiting time for an aircraft arriving 
at airport i at end of period k; 

k the number of scheduled arrivals at airport i 
during period k. 

The arrival times t' are real numbers which represent 
times within the integer time periods. Time t = 0 is the 
start of the operating day. Let K(t) be the function which 
takes real-time values into their corresponding periods: 

K(t) = Lt{ 
The scheduled arrival rates {AZ} are determined from the 
sets of aircraft d?(n, k) which are in turn determined by 
the itineraries 3(v): 

k= kW(n, k)j (15) 

si(n, k) = {v: (n, t, s) E 33(v) for some s and v(t) 

= k} (16) 

Consider an aircraft which arrives at airport n at some 
time t during period k. An estimate of this aircraft's wait- 
ing time to land is the convex combination of expected 
waiting times at the end of periods k - 1 and k, 

aE[Wk7-] + (1 - a)E[Wk], (17) 

with the weight a determined by whether t lies closer to 
the end of period k or k - 1: 

a = K (t) - t (18) 
At 

Not all of this delay is necessarily propagated to later 
points in the system, however, because of slack and cu- 
mulative delay, dv should be adjusted to reflect this fact. 
To illustrate, let the above aircraft's next scheduled stop 
(stop m + 1) be n' at time t', and suppose that from the 
current stop until the next stop there is an available slack 
of s'. Prior to the mth stop, the aircraft's cumulative 
delay was d'; thus its new scheduled arrival time is given 
by 

t' + (dv + aE[Wk_1] + (1- a)E[Wkn]-s'). (19) 

In words, the aircraft's delay into its next stop is the 
maximum of zero and current delay plus new delay less 
schedule slack. Algorithm 1, based on this simple idea, is 
thus summarized as follows: 

1. Initialize arrival schedules si(n, k) and set all delays 
dV = 0. 

2. For all periods k = 1,..., K and airports n = 

1, ... , N 

* Set An = kI-(n, k)I 
* Calculate E[Wk], ...,E[Wk ] from (5)-(14). 
* For each aircraft arriving in period k, update expected 

delay via (19). 
* Update arrivals ds(n, k) according to the updated de- 

lays. 

The full algorithm is given in the Appendix. 
In computing expected waiting times, we must aggre- 

gate aircraft and compute the level of demand at each 
airport, while in the schedule-updating procedure we dis- 
aggregate to the level of individual aircraft. To make this 
procedure efficient, we employ the data structure of 
Figure 1. The arrival sets s4(i, k) are singly-linked lists 
of aircraft indexed by current destination i and arrival 
period k. The number of aircraft records hung from a 
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particular location in the data structure constitutes the 
demand rate for that period. Once delays are updated, 
each affected aircraft record is rehung from a new part of 
the arrival matrix. With this data structure the inner up- 
dating loop requires only O(V) time, so the bottleneck 
consists of repeated calls to a subroutine for computing 
expected waiting times. Because for each time period k 
the algorithm must recalculate all of the preceding ex- 
pected waiting times, overall complexity is O(KNU), 
where U is the complexity of the single hub algorithm. In 
Peterson, Bertsimas and Odoni it was shown that for a 
Markov model of capacity (i.e., where capacity durations 
are geometric), U = 0(S2K2QmaX). Thus, if the Markov 
capacity model is specified with S capacity states, over- 
all complexity for Algorithm 1 is O(NS2K3Qmax). For 
general duration times, running times are multiplied by a 
factor M which constitutes a practical bound on the 
range over which the hazard rate for the duration is non- 
constant (M = 20 for the Dallas hub). 

The presence of the additional factor K arises from the 
fact that the recursion is restarted from time 0 at each 
new period. This duplication of effort could be avoided if 
it were possible to store within the single hub algorithm 
the end conditions of iteration k as initial conditions for 
iteration k + 1. However, this would mean storing the 
joint probabilities for queue length and capacity, and 
computing these probabilities requires O(Qmax) times as 

airport i, 
period k 

Current 
Arrival 
Matrix 

aircraft # Schedule Information 

cumulative 
delay 

location location other info time time 
slack slack 

aircraft # current point in itinerary 

cumulative 
delay 

other info 
location location 

time time 

slack slack 

Figure 1. Data structure used in network congestion 
algorithms. 

much effort as for the expectation alone (see Peterson, 
Bertsimas and Odoni). A more practical improvement is 
to have the recursion restart only every m periods, 
where m is the minimum number of periods any aircraft 
has between scheduled stops. While in the original imple- 
mentation, the number of iterations performed within the 
recursive algorithm is K(K + 1)/2, under this new 
scheme it is 

m + 2m + 3m + + Gm + K' = G(G + 1)m/2 + K', 

where G = L K/mJ and 

K ={K if Gm <K 
K 0 otherwise. 

This modification alone leads to substantial savings. The 
number of iterations is reduced by a factor 

K(K + 1)/2 K(K + 1) 

m[K/mJ(LK/mJ + 1) K(K/m + 1) 

K+ 1 
K/m + 1 

In the case K = 80, for example, a value of m = 10 
implies that the number of iterations is reduced from 
3,240 to 360, one-ninth of the former number. Because 
of the high computational requirements of the network 
problem, the speed advantage of the Markov model 
over the semi-Markov model (nongeometric service 
durations) is meaningful, while case study results sug- 
gest that the results are insensitive to the input distri- 
bution. For these reasons, we will focus on the 
Markov formulation of capacity for the remainder of 
the paper. 

3. AN ALGORITHM WITH PROBABILISTIC 
UPDATING 

The updating scheme of the previous section takes deter- 
ministic arrival streams and uses expected waiting time 
information to convert them into new deterministic ar- 
rival streams. A better method might take into account 
the variance in the waiting times, as well as the mean, in 
specifying information about future arrivals rates. These 
arrival rates are thus specified probabilistically rather 
than deterministically. 

For airport n at period k, let the expectation and vari- 
ance of the waiting time be A and &, respectively. Let 
fk(w) be a density for the waiting time Wk estimated 
(see below) from these parameters. Given this density 
and the schedule slacks, we may characterize (probabi- 
listically) the next arrival period of each aircraft v E 
si(n, k). Specifically, we compute numbers pv(O), 
p,(C) and kv(0), . . ., k,(C) such that the next period in 
which aircraft v will land is kv(i) with probability pj(i). 
Here, the parameter C is a practical upper bound on the 
number of periods of delay possible. Figure 2 illustrates 
this phenomenon of traffic "splitting." 
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i, k 

Pv (0) 

aircraft v 

i, k+1 
P, (1) 

tJ t~~P(2) 

i,k+2 
- airport j, 

period I Pv (C) 

(k+C 

Figure 2. The traffic splitting phenomenon: alternative 
future aircraft paths depend upon delay 
encountered. The numbers { p,} indicate 
probabilities. 

Next, define the stochastic arrival quantities 

A(n, k) A = the number of arrivals at airport n in 

period k. 

For some user-specified number R (representing the 
number of possible values taken by the random vari- 
ables) suppose that we may estimate numbers 
yk ; ),. ,y (R) and A'(1), , A'(R) such that 

Pr{A(n, k) = Ak(1)} = . n(l), 

Pr{A(n, k) = Ak(2)} = y(2),(20) 

Pr{A(n, k) = Ak (R)} = 'yn(R)- 

where >L n (i) = 1. This variability in the arrival rates 
is easily incorporated into the recursion for expected 
queue lengths and waiting times; the innermost loop of 
the recursion is rewritten to take the expectation over all 
possible values of Ak. For example (c.f. Kobayashi), 

0Wk(l, i, m, q) 

R 

- YT+1[Pii(m)Wk(l + 1, i, m + 1, 

r-I~~~~~~~~ 
* (q + Af+1 - ,l)+) + f pfi(m)0Wk 

joi 

*(I + 1, j, 1, (q + A+ - j) +) (21) 

This recursion produces future waiting time estimates, 
leading to new densities, new arrival probabilities, and 
so on. Thus, the previous description suggests an 

alternative algorithm, Algorithm 2, that will be described 
in detail. 

Figure 2 suggests another important point. Because of 
uncertainty in delays, an aircraft landing at a particular 
place and time takes one of many future paths. Ideally, 
we would like to keep track of all such future paths and 
thus be able to assign probabilities to all realizations of 
the sets s4(n, k). Unfortunately, the computational com- 
plexity inherent in this task is overwhelming because of 
the large number of such paths-O(C(v)) for each air- 
craft v, where ;(v) is the number of airports in v's itiner- 
ary. Thus, while we can reflect the splitting phenomenon 
in assigning probabilities to the different values A'(-), we 
must limit the realizations of the sets s4(n, k). To accom- 
plish this, we again update each aircraft's cumulative 
delay by a convex combination of E[ Wk] and E[W I]. 
Unlike Algorithm 1, Algorithm 2 allows a partial model- 
ing of the splitting phenomenon (through the Az's), but 
only part of the phenomenon is captured, i.e., the imme- 
diate effect of delay uncertainty on the next period's ar- 
rival rates. This splitting is not reflected when aircraft 
schedules are updated. 

As outlined, the second decomposition algorithm re- 
quires four separate procedures: 

1. Estimation of the densities f n(w; ,u(i, k), o-2(i, k)) 
for the waiting times at each station and period, given 
the estimates of mean and variance computed in the 
recursion. 

2. Translation of these density functions into probabilis- 
tic descriptions of future arrival periods for each air- 
craft, as given in the parameters pv(O), pvC, pv(C) 
and kJ(O), ... , kv(C). 

3. Translation of the individual aircraft parameters 
pv(O), * v , pv(C) and kJ(O), ... , kv(C) into simple 
discrete distributions for the random variables A(n, 
k). 

4. Updating of aircraft itineraries and airport arrival 
lists. 

The fourth of these procedures was described in Section 
2. The first three are described in further detail in what 
follows, and a summary of the algorithm is given in the 
Appendix. 

3.1. Obtaining Waiting Time Densities 
Without prior assumptions, estimation of the densities 
f(w) on the basis of knowing only two moments is prob- 
lematic. In the case of a single airport, a simple simula- 
tion of the capacity process (from the Markov chain) 
suggests a starting point. Under deterministic arrival as- 
sumptions, the simulation of period capacities yields the 
matrix of observations 

w ={W}, 

where W %in is the waiting time at the end of period k for 
the mth (independent) simulation. A sample histogram 
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Figure 3. Histogram from simulated waiting times in a single queue. 

for the waiting time for period 50 (for the case of a con- 
stant arrival rate A = 60 per hour and p - 0.85) is illus- 
trated in Figure 3. Note the presence of a substantial 
probability mass at the minimum value (in this case, 0). 
Values above this minimum follow an approximately ex- 
ponential distribution, and probability plots (not shown) 
confirm this. The results suggest an approximate mixed 
distribution for the waiting times Wke: 

Pr{Wkn Wmin(ln k)} = 8 

Pr{Wk w I w > Wminf(n, k)} = 1 - e.(wwmn(nsk)) (22) 

The parameters Wmin(n, k), usually but not always 0, can 
be calculated directly from the recursion in a manner 
similar to that for the parameters qmax(n, k). The param- 
eters 8 and v must be determined by solving the pair of 
equations (omitting subscripts) 

awmin + (1 , 8) wve (wwmin) dw = E[], 
JWmin 

8(Wmin)2 + (1 -8) f W2veC-(W-Wmin) dw = E[W2]. 
Wmin (23) 

In terms of the mean Ov and variance o2 we obtain the 
solution (omitting subscripts) 

02- (1-Wmin)2 
8= 2 

2' (24) cr + (1-Wmin) 

2(0 - Wmin) 
=2 )2 (25) 
012 + 07V 

- 
Wmin) 

Note that 8 is always less than 1 and will be nonnegative 
provided that 

(fV - Wmin)2 

In the typical case where w mn is zero, this is equivalent 
to the condition that the squared coefficient of variation 
for waiting times exceeds 1. Only in rare instances of the 
tests presented shortly was this condition found not to 
hold. In those cases, the parameter 8 was set to 0 and the 
entire distribution was assumed to be exponential. 

3.2. From Densities to Schedules 

Given estimated densities for Wk for all points n in the 
network, the next step in the procedure is to infer prob- 
abilities for the immediate future paths of all aircraft v E 

I(n, k). For any such aircraft, let (n', t', s') be the 
scheduled next stop (stop m + 1) on its itinerary. The 
earliest period in which this aircraft's next landing may 
actually take place is 

kv(0) = K(t' + [dv + Wmin -SI 

This is the earliest period at which this aircraft could 
next land, reflecting the minimum waiting time achiev- 
able at this stop (usually 0). Accordingly, the greatest 
amount of delay this aircraft can endure at i and have 
this next arrival period remain unaltered is 

w(0) max{w': K (t' +[dv+wP -s']+) =kv(0)} 

= {W': t' + dv + W' - s'= kv(0)At} 

= kv(O)At - t' - dV + s', 

where dV is its cumulative delay prior to the mth stop. 
The probability that the aircraft's next scheduled period 
is kj(O) is 
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Pv(O)(O w f(W; A,0,o2) dw. (26) 
fWmin 

If Wmin = 0, which is usually the case, kJ(O) corresponds 
to the outcome that zero additional periods of delay are 
added to aircraft v at this stop. When the waiting time 
density is approximated by (22) with wmin = 0, (26) 
becomes 

Pv(O) = 8 + (1 - 5)[1 - exp(-Aw(O))]. 

Letting w(1) = w(O) + At, the probability of the next 
scheduled period being kv(1) k- k(O) + 1 is 

w(1) 

PV(M)= I f(w; A,, o-2) dw, (27) 
w(O) 

and, in general, the probability of c additional periods of 
delay is 

w(c) 

Pv(C) = ff(w; ,_t, o2) dw, (28) 
w(c -1) 

where w(c) = w(O) + cAt. These expressions take the 
appropriate specific forms when the distribution (22) is 
substituted. 

For practical reasons, it is necessary to choose some 
upper bound C on the number of periods of delay to 
allow. Hence 

00 

PV(0) = f (W; AU C1012) dw. 
w(C-l) 

Together with the numbers {kv(c)}, the probabilities 
{p,(c)} then constitute a probabilistic description of the 
next period in which aircraft v will demand to land. 

3.3. Characterizing Arrivals 

To translate the numbers {pj(c)} into a probabilistic de- 
scription of the future demand rates A(n, k), define the 
random variable 

Xn ',nk (V) 

1 if v E sL(n', 1) is delayed such that its 
next stop will be n at period k 

0 otherwise. 

This random variable denotes the "contribution" of an 
arrival at one place and time to the arrival rate at a future 
place and time. Note that if the next stop of v E sl(n', 1) 
is n, then 

Pr{Xn l,.k(v) = 1} =pv(k - 1). 

In words, for aircraft v E sl(n', 1), the probability that 
it will contribute to the landing demand at airport n dur- 
ing period k (assuming that n is its next scheduled stop) 
isp,(k - 1). 

The random variables Xfl' ,k(v) provide the necessary 
connection between aircraft and arrival rates via 

N V 

A(n, k) = I 2 2 Xn>lnk (V- (29) 
n'=1 lI<k v=1 

In words, this says that the arrival rate at (n, k) is the 
sum of all contributions from previous points in the itin- 
eraries (e.g., see Figure 4). Thus, the random variables 
{A} are sums of Bernoulli random variables. Defining 

NL(v, k) -_= next destination of aircraft v after period k 

the expectation is easily obtained as 

N V 

E[A(n, k)] = > E E[Xn'l,nkk(v)]I 
n'=1 1<k v=1 

N 

> X E pv(k -1). (30) 
n'=1 l<k v:NL(v,l)=n 

Obtaining the variance of A(n, k) is not straightfor- 
ward because the terms of the sum are not independent. 
Aircraft delayed at earlier points in the day may share 
the same source for those delays, so that their contribu- 
tions to future demands may be correlated. On the other 
hand, diversity in scheduling and slack weaken this de- 
pendence. For the sake of tractability, we make the ap- 
proximation that the contributions are approximately 
independent and write 

Var[A(n, k)] 

N = E E E pv(k - 1)(1 - pv(k - 1)). (31) 
n'=1 I<k v:NL(v,l)=n 

This approximation agrees quite closely with simulation 
results. 

ii 
p(k- I1) 

2' 2 p~~~~k-12) 

k A (ik) = demand at airport i 
(- 1') J in period k 

P3(k- 13) 

p (k-I 

S 

Figure 4. Updating downstream arrivals in Algorithm 2: 
early arrivals and delays contribute to de- 
mands later in the day. 
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The specification of approximate distributions for the 
{A(n, k)} is the final step in translating aircraft delays 
into arrival rate information. Again, we confront the is- 
sue of estimating a distribution from only two moments. 
The form (29) suggests a normal form based on the cen- 
tral limit theorem idea, though convergence may not be 
good due to nonindependence of the terms of the sum. 
Simulation results indicate that for early periods of the 
day where there are fewer terms in the sum, unusual 
skewness patterns are possible (see Figure 5). These pat- 
terns disappear later in the day. While this phenomenon 
is cause for some concern, test runs also indicate a con- 
siderable degree of insensitivity to the demand rate dis- 
tribution. We retain the normality assumption while 
acknowledging its imperfections. 

Although Algorithm 2 involves considerably more 
modeling work than Algorithm 1, its computational com- 
plexity is only slightly higher, O(RKNU), where R is the 
user-specified number of values used in the approximate 
distribution for the arrival rates, and U is the complexity of 
the single hub recursive algorithm with deterministic input. 
If the Markov capacity model is specified with S capacity 
states, the overall complexity is O(RNS2K3QmaX). 

4. TESTING THE DECOMPOSITION MODELS 

Both Algorithms 1 and 2 are suitable for a general net- 
work (i.e., not necessarily hub and spoke). However, 
without the streamlining suggested at the end of Section 
2, running times are somewhat high for large networks. 
For a simple 2-airport network with K = 60 periods at 
each station, Algorithm 1 takes about 10 minutes on an 

Ultrix DECsystem 5900 workstation, while Algorithm 2 
takes about 30 minutes. With the reduction in calls to the 
recursion achieved by the streamlining procedure, there is 
roughly tenfold improvement in these figures. Even with 
this improvement, modeling a full-size network of a large 
airline (400+ nodes) is a somewhat daunting problem. 

The problem is well suited to parallel computation, 
with different processors handling the individual nodes 
and a central processor controlling the bookkeeping of 
aggregation and disaggregation. However, further simpli- 
fication is clearly desirable. In this respect, note that 
from the perspective of a single air carrier serving a hub- 
and-spoke network, delays at the hubs have far greater 
implications for disruption of schedule than delays at 
the spokes. This observation suggests that we reduce the 
network to include only the hubs, tracking only those 
aircraft belonging to the hub carrier and incorporating 
spoke information in setting itineraries. We treat other 
arrivals as fixed and assume that congestion delays other 
than those emanating from the hubs are negligible. All 
internal flights in the collapsed network (see Figure 6) 
appear to take place between hubs, but flight times vary 
to reflect intermediate spoke stops. The reduced model 
collapses a large airline's network from 400+ nodes to 
perhaps 5 or 6 but still captures essential behavior. 

4.1. Testing Procedure 

The network of Figure 6 will serve as a testing ground for 
the decomposition algorithms; its simple structure 
readily allows experimentation and interpretion of the 
results in terms of the demand and capacity behavior. 
Table I summarizes eight test cases, which differ with 
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Arrivals in Period 22 at Hub I 

Figure 5. Histogram of A(1, 22) obtained from simulation. Unusual skewness patterns such as 
this one may occur in the early part of the day when the contributing prior arrivals are 
still largely deterministic. 
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Figure 6. Two-hub test network obtained from larger hub-and-spoke network. 

respect to the number of banks (i.e., the peak arrival 
periods), the degree of separation between banks, the 
percentage p of flights which visit different hubs (rather 
than the same hub) on alternate visits, the time-averaged 
traffic intensity p, the amount of schedule slack, and the 
initial capacity conditions. The parameter p is a measure 
of how each node is tied to the performance at the other. 
A value of p = 1 implies a fully connected network (all 
flights alternate between the hubs). 

Demand and capacity data for case 1 closely resemble 
those at Dallas-Fort Worth. The three capacity states are 
associated with poor, medium, and good weather condi- 
tions. The steady-state probabilities associated with 
these three states are 0.07, 0.10, and 0.83, which corre- 
sponds to the self-transition probabilities (pij) of 0.92, 
0.9, and 0.98. The demand data are simulated as follows. 
First, each "internal aircraft" (i.e., belonging to the host 
carrier) is randomly assigned to one of the two hubs, and 
a first arrival time is chosen from one of the first 5(?) 

arrival banks. Subsequent locations and scheduled land- 
ing times for the aircraft are then chosen according to the 
value p such that the resulting demand profile closely 
resembles that for DFW in March 1989 (these data were 
employed by the authors in the earlier study of DFW). 
Aircraft slacks (the cushion available prior to each air- 
craft trip) take values in the range of 15-20 minutes be- 
tween stops at hubs, depending on the distance to the 
intervening spoke. 

In case 2, schedules for internal aircraft are simulated 
in a similar fashion, but the result but the demand pattern 
groups aircraft into banks of 30-minutes duration at each 
hub, with relatively short periods of 15 minutes in be- 
tween. Peak demands are higher than in case 1, while 
capacities are slightly lower (the underlying Markov 
chain has steady-state probabilities 0.26, 0.21, 0.53, and 
pij values 0.9, 0.8, and 0.95). This second experiment 
represents the extreme of tight scheduling, with slack 
reduced to 5 minutes per stop. Case 3 reports results for 

Table I 
Test Run Information (note that traffic intensities p are based on that part of the schedule which 

does not include the runout period at the end of the day; steady state indicates that initial 
capacities occur according to the steady-state probabilities of the Markov chain) 

Number 
of Initial 

Case Banks Bank Space p p Slack Capacities 
1 (DFW) 30 mins (avg) 0 0.5 15-20 mins. Low/high 
2 12 15 mins. 0.5 0.9 5 mins. Steady state 
3 0.5 0.8 5 mins. Steady state 
4a 10 30 mins. 0 0.7 5 mins. Low/high 
4b 10 30 mins. 1 0.7 5 mins. Low/high 
5a 10 30 mins. 0.5 0.7 5 mins. Steady state 
5b 10 30 mins. 0.5 0.7 10 mins. Steady state 
Sc 10 30 mins. 0.5 0.7 15 mins. Steady state 
5d 10 30 mins. 0.5 0.7 20 mins. Steady state 
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a continuous demand pattern at the two airports (no pro- 
nounced peaks), with capacity the same as in case 2. 
Cases 4 (a and b) and 5 (a-d) are concerned with the 
effects of slack and connectivity on schedule reliability. 
Both have a traffic pattern like that of case 2, but with 
lower landing demand and greater bank separation. 

The first three cases compare the results of the decom- 
position algorithms with the results from simulation. This 
simulation procedure is based on the same Markov chain 
model of capacity but does not employ the approxima- 
tion procedures for delay propagation implied by (17)- 
(19) and (20)-(31); instead, it performs updates according 
to realized delays. In the terminology of Law and Kelton 
(1991), this is a terminating simulation, with each replica- 
tion lasting one operating day of k = 60 periods (80 for 
case 1). Capacity switches between the three states ac- 
cording to the simulated progress of a Markov chain, 
with initial conditions sampled according to the steady- 
state probabilities. Queue length is determined each pe- 
riod as a deterministic flow (given demand and capacity), 
and the waiting time is calculated from the subsequent 
capacity path. For example, if the queue is 20 at a given 
time and the capacity remains at 80 per hour for the next 
half hour, the wait is calculated to be 15 minutes. Sched- 
uled demand is updated according to cumulative delay as 
determined by simulated waiting times and slack (the 
principal departure from the approximations). Replica- 
tion j(j = 1, ... , N) of the simulation produces the 
waiting times Wj1, Wj2, . . ., WjK. For each period k, 
the random variables Wjk, j = 1, . . ., N are i.i.d. (Law 
and Kelton), and an unbiased estimator of the waiting 
time is given by 

N 

Wk = E Wjk, (32) 
j=l 

with an estimated standard error 

>1 [Wjk - Wk]2 

N-i (33) 

A simulation of N = 10,000 replications gives a relative 
error of approximately 1% for sample mean waiting times 
and ensures that rare sample paths are represented (for 
example, an instance of 60 consecutive periods of state 1 
would occur approximately 17 times in 10,000 replica- 
tions). Results are reported for an implementation in C 
run on an Ultrix DECsystem 5900 workstation. 

4.2. Results and Discussion 

Cases 1-3: Model Comparison. Figure 7 shows the ex- 
pected waiting times at hub 1 for test cases 1-3, as pre- 
dicted by the simulation and the two network 
approximations. Each period's estimated waiting time 
from simulation has a standard error of approximately 
1%, which implies an approximate 95% confidence inter- 
val of ?2% relative to the reported value. Because peri- 
ods clearly are not independent, one cannot make 

comparable confidence statements about the path taken 
as a whole (this is the "multiple comparisons problem- 
see Law and Kelton, p. 569); however, this level of preci- 
sion is surely adequate for discussing qualitative behavior. 

The top part of the figure shows case 1, which approx- 
imates the situation at the Dallas-Fort Worth hub. The 
earlier study (Peterson, Bertsimas and Odoni) considered 
this hub in isolation without taking into account delays 
encountered elsewhere in the network; the estimates ob- 
tained in that case are also included in the top graph. As 
may be readily seen, there is fairly close agreement be- 
tween all four curves. This situation owes to the fact that 
expected waiting times are approximately equal to slack 
values (15-20 minutes), so that the amount of delay car- 
ried over is small. The simulation case deviates slightly 
from the others after hour 10 because propagation in that 
case only is based on individual realizations of waiting 
time rather than on the expected value. Simulation thus 
reflects a degree of "tail behavior" which the others do 
not. The resulting longer delay propagations shift more 
traffic to the later part of the day when demand is low, 
smoothing the overall demand profile and reducing ex- 
pected queueing delays at those times. This smoothing 
influence of the network is small, however, compared 
with the influence of the peaked arrival pattern itself on 
waiting times; in other words, for this type of schedule, 
the network influence does not predominate. 

The situation is different in cases 2 and 3 (the center 
and bottom of Figure 7). In case 2, the expected waiting 
times (30-40 minutes) are high relative to aircraft slack 
(5 minutes), and banks are closely spaced. As the day 
progresses, propagated delays become significant and are 
reflected in an increasing gap between the decomposition 
algorithms and the simulation. As in case 1, the two al- 
gorithms' "update by expected waiting time" strategy 
does not fully reflect the shift of traffic to the end of the 
day and the resulting schedule smoothing. This smooth- 
ing reduces expected waiting times by as much as 30% 
for some periods. The mean deviation of algorithmic out- 
put from simulation output may be estimated by the 
"standard error" 

K=1 (Xk - Yk)2 

K-i1 

where Xk is the waiting time value predicted by the algo- 
rithm for period k and Yk the corresponding value for the 
simulation. For Algorithms 1 and 2, these numbers are 
6.11 and 5.69, respectively, reflecting a 0-30% discrep- 
ancy over the course of the day. Case 3 (demand contin- 
uous over the day-no peaks) also shows this magnitude 
of deviation (see the bottom of Figure 7). 

A glance at the waiting time profiles for cases 1 and 2 
(top and center of the figure) indicates that waiting 
time profiles are much smoother in the latter case. In 
fact, the peaked pattern of demand is barely visible 
in case 2a; propagated delays are numerous enough to 
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Figure 7. Comparison of expected waiting times predicted by one-hub algorithm, simulation, and 
the two decomposition algorithms for case 1 (DFW data) (top);- comparison of expected 
waiting times predicted by simulation and two decomposition algorithms for case 2a 
(center); comparison of expected waiting times predicted by simulation and two de- 
composition algorithms for case 3 (bottom). 

obscure the peaked arrival structure. Figure 8 plots the 
original demand profile at hub 1 together with that pro- 
duced as a result of propagated delays (arrival rates 
based on averages from simulation). The figure shows 
quite clearly the way in which delay propagations dis- 

rupt the original peaked pattern. As noted, because of 
complexity limitations, the two decomposition algo- 
rithms update schedules via expected value. Because 
tail behavior is significant in this heavy traffic case 
(waiting times up to 3 hours, expected waits around 40 
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Figure 8. Influence of delay propagation on actual arrival rates by period. 

minutes), the decomposition algorithms do not reflect 
the fact that a significant fraction of arrivals are pushed 
back to the later part of the day, when there is no 
scheduled traffic. 

The results of cases 1-3 suggest the circumstances un- 
der which network impacts become important, and they 
also indicate that under these circumstances, the approx- 
imations developed in this paper tend to overstate wait- 
ing times during extended busy periods. Case 1 suggests 
that for networks of airports like DFW, waiting times are 
probably not high enough to create significant network 
effects on a frequent basis: The deterministic part of the 
schedule (i.e., the bank structure) predominates. Initial 
conditions have a major impact on schedule disruption, 
as the discussion in our earlier study emphasized; the 
low effect reported here is an average over all initial 
conditions which does not discount individual cases of 
severe disruption. In terms of average case behavior, 
however, high levels of propagation occur only in much 
heavier traffic situations where the spacing between 
peaks is low (cases 2 and 3). This description fits few if 
any airports in the nation today, though it is a plausible 
future scenario. 

Running times for Algorithms 1 and 2 on the Ultrix 
workstation averaged 10 and 30 minutes, respectively. 
Perhaps surprisingly, the simulation procedure (10,000 
replications) took only five minutes. This gap would be 
closed by incorporation of the restart procedure de- 
scribed earlier. For a value of m = 10 - 2 1/2 hours, 
the approximate minimum time between successive hub 
visits-there would be a factor 8 reduction for K = 60 
periods, 9 for 80 periods; in other words, running times 
are approximately comparable. The short running time of 
the simulation procedure is attributable in large part to its 
simplicity. Like Algorithms 1 and 2, the simulation com- 
putes waiting times as if aircraft constituted a flow pro- 
cess; it is not a "full-fledged" simulation modeling 
aircraft service times as discrete events. The reason for 
this simplification is that the simulation's main purpose is 
to test the effect of the "update by expected value" 
approximation (the simulation updates schedules by sim- 

ulated waiting time realizations rather than by expecta- 
tion). A "full-fledged" simulation treating individual 
aircraft service times would be considerably more time 
intensive than all of the approaches discussed here. 

Given approximately comparable running times, the 
main computational weakness of the two approximation 
procedures lies in their limited ability to reflect large de- 
lay propagations, the fact which is responsible for the 
discrepancies in Figure 7. For realistic demand data 
(case 1), the discrepancy is small; however, in heavier 
traffic it becomes significant. For these latter cases, the 
approximations probably do not model the situation as 
effectively as the simulation. Thus, the results are at least 
partly discouraging for the approximation procedures. 
However, they do not negate the original modeling ap- 
proach for arrivals and capacity, which is incorporated 
into the simulation itself. Comparing this reduced-form 
simulation with a full-scale one is an important issue be- 
yond the scope of the present paper. 

4.2.1. A Policy Application 

The models examined in the preceding subsection are 
useful for examining the qualitative behavior of the 
network under different policy scenarios concerning net- 
work connectivity and aircraft slack. One measure of 
connectivity in the test airport network is the percentage 
p of flights having operations at both hubs. Case 4 con- 
siders two opposing extremes of this: a fully disconnected 
network (case 4a), where each hub has its own set of air- 
craft; and a fully connected network (case 4b), where all 
flights alternate between the two hubs in between visits to 
spokes. Case 4a models the idea of hub isolation in which 
scheduled bank times at one hub cannot be disrupted by 
late arrivals from the other. It reflects a strategy in which 
the airline essentially operates its hubs independently of 
one another. In both cases, the initial capacity state of the 
first hub is taken to be low (poor weather), while that of 
the second hub is high (good weather). The phenomenon 
of interest is the propagation of delays from 1 to 2. 
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Figure 9. Average aircraft delays at two hubs under different degrees of connectivity. Note that 
the x-axis is in terms of banks rather than continuous time, thus 2-1 indicates the half 
of the second bank, 7-2 second half of the seventh bank, etc. 

Figure 9 plots average cumulative delay per arriving 
aircraft (this is essentially the sum of all waiting times for 
the aircraft minus slack). The early banks show zero 
delay, while the later banks reflect delay carried over 
from previous points in the itinerary. The figure indicates 
a degradation in performance at hub 1 when it is isolated, 

as well as the corresponding benefits of isolation at hub 
2. Conversely, the fully connected case benefits hub 1 at 
the expense of hub 2. The latter result is perhaps unex- 
pected. Examining the situation more closely, one finds 
that the delays at hub 1 in the connected case seem to lag 
behind the delays in the disconnected case by about two 
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banks (2 hours), a circumstance explained by the fact 
that the minimum time between an aircraft's successive 
visits to the same hub is four hours in the connected case 
but only two in the disconnected case. This 2-hour lag does 
not fully explain the difference in the heights of the two 
curves, however. The remaining difference is explained by 
the fact that in the connected case, late aircraft leaving hub 
1 have the opportunity of recovering some of the delay 
through slack at the next stop (uncongested hub 2). This 
opportunity is not available in the disconnected case, be- 
cause the next stop is (congested) hub 1. 

This result has interesting implications for a strategy of 
hub isolation. In the case of a hub which is believed to be 
the source of a large amount of congestion, such a strat- 
egy will indeed protect other hubs in the system from the 
uncertainties and disruptions produced by the problem 
hub. On the other hand, disruption at that hub itself may 
worsen because many of its later arrivals will have had 
an earlier scheduled stop there already. The carrier 
trades off the benefit of limiting the scope of propagation 
against the cost of a higher scale of delay achieved 
through focusing the problem in one location. 

Cases 5a-d illustrate the effect of aircraft slack. As 
Figure 8 shows, higher slack acts to preserve the demand 
peaks of the original schedule and thus may actually in- 
crease local queueing delays; lower slacks smooth the 
schedule but do less to reduce the cumulative delay ex- 
perienced by aircraft, as is illustrated in Figure 10. 

5. CONCLUSION 

In this paper, we have developed two related analytical 
models for the difficult problem of modeling transient 
queueing behavior in an airline network and studying the 
network effects of air traffic congestion. We would sum- 
marize our major findings as follows: 

1. The importance of traffic splitting phenomenon: High 
uncertainty in the levels of delay encountered by air- 
craft is a prominent feature of the network problem. 
We have developed two different approximation 
schemes for modeling this phenomenon. When, how- 
ever, successive airline banks are narrowly spaced, 
accuracy in keeping track of aircraft amid this uncer- 
tainty is limited by high computational complexity. 

2. Role of deterministic effects: The peaked pattern of 
demand at hub airports remains a strongly determin- 
ing factor in predicting waiting times, particularly 
when major banks are separated by adequate lengths 
of time. 

3. The delay and smoothing: On the other hand, in cases 
where banks are narrowly spaced, delay propagation 
exerts a strong smoothing effect on the demand and 
waiting time profiles. 

4. The effects of hub isolation: A policy of isolating a 
congestion-prone hub clearly does have the effect of 
improving performance at others. On the other hand, 

under this policy the isolated hub produces delays 
which disrupt its own future schedule. 

By providing insights into such difficult issues, models of 
this type could serve as powerful planning tools in ad- 
dressing strategic issues related to airline network design 
and flight scheduling. As we remarked earlier, airlines 
are currently undertaking efforts in this area, though 
from a quite different perspective and with a completely 
different modeling approach. The queueing approach de- 
veloped here has the advantage of modeling congestion 
phenomena directly rather than using empirically-derived 
estimates of past delays. It therefore offers the ability to 
evaluate schedules over the range of capacity scenarios 
and under future traffic scenarios which are not reflected 
in historical data. 

The decomposition approaches discussed clearly show 
the difficulty of the underlying queueing problem and the 
need for further work. Some of the difficulties are 
straightforward to address (e.g., the run time reductions 
discussed at the end of Section 1). Others, such as the 
adequate modeling of sample-path "splitting," are more 
difficult because they involve high-dimensional computa- 
tional complexity. In the test problems considered in this 
paper, we have shown that the "tail" cases (arrivals 
whose delay is so large that they are pushed back to 
low-traffic periods) are the main source of degradation in 
model accuracy. Additional work is necessary to see 
whether this phenomenon is equally important in other 
test cases. In the event this proves true (as is likely), 
model refinements should focus on attempts at updating 
arrivals in a way which captures these tail phenomena 
more fully, without necessarily attempting to encompass 
the full sample space of potential demand paths. Such 
refinements, coupled with the inherent advantages of an- 
alytical approaches over simulation, will eventually make 
models such as this one a viable alternative. 

APPENDIX 
Network Algorithms 

First Decomposition Algorithm for Air Network 
Congestion 

Initialize 
Fork = 1 to K 

For n = 1 to N 
sl(n, k) = 0 

**first itinerary stops are deterministic since not affected 
by earlier delays** 
For n = 1 to N 

For v = 1 to V 

YJ(n, K(tv)) = st(n, K(tv)) U v 
Set dv = 0 for all v. 

Main Loop 
Fork = 1 to K 

For n = 1 to N 
Set Ak = |s/(n, k)|. 
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Using the recursive method at each airport, calcu- 
late E [ Wk], * * *, E [ W'k]. 
For v E s4(n, k): 
**find the part of the itinerary corresponding to this 
stop ** 

Find m: (nv, tv, sv) E 9(v) and K(tv + dV) = 

k. 
Set n = nm, t = tm + dV, S = Sm, f' = 
nm+l, t' = tm+, Si = SM+l 

Set a = K(t) - t/(At). 
**calculate propagated delay** 

Set dv+1 = [dV + aE[WnK(t)-l] + 

(1 - a)E[JV(t)] -s']+. 
**determine next arrival period and update data 
structure' * 

Set s4(n', K(t' + dV)) = -s (n', K(t' + dV)) U 
V. 

END. 

Second Decomposition Algorithm for Air 
Network Congestion 

Initialize 
For k = 1 to K 

For n = 1 to N 

25 - 
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Figure 10. Effect of slack on total delay at each hub under 50% connectivity. 
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sl(n, k) = d?, E[A(n, k)] = 0, +2[A(n, k)] = 0 
For v = 1 to V 

s?L(n, K(tv)) = sl(n, K(tv)) U V 
For each (n, t, s) E S(v), E[An(t] = E[An(t] + 

1 

Set dv = 0 for all v. 

Main Loop 
For k = 1 to K 

For n = 1 to N 
From E[A(n, k)] and +2[A(n, k)] determine the 
quantities 

An(j), ..., An(R) and yk(l), ekn(R). 
Using the recursive algorithm with probabilistic in- 
put A, 1tt 

calculate E[WJ, *. , E[Wk] and u2(Wk) ... 

0-'(WkN) 

**Update itineraries-same way as first algorithm*** 
For v E sl(n, k): 

Find m: (nv, tn, sm) E J(v) and K(tv + dV) = k 
Set n = nm, t = tm + dv, S = Sm, n = 

im+1' t = tm+1 S' = SM+l 
Set a = K(t) - t/(At). 

Set dv~1 = [dv + aE[WfKt(t)l1] + (1 - 

a)E[WnK(t)] s ] 
Set sL(n', K(t' + dv)) = si(n', K(t' + dv)) U v. 

**Update future arrival rates** 
From a, E[Wk], and o&2(Wkn), determine 
the densities {Jf(w)}. 
From the densities fn(w), determine the 
quantities 

p v (0),--, pv(C) and kv(0),... 
kv(C) for all v E i(n, k). 

For c = 0 to C: 

E[k(VC)] = E[k(vc)] + PV(C) 

k(v~c)) = o2(k(v~c)) + PV(C) 
(1 -pv(c)). 
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